Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 670
Filter
1.
PLoS Negl Trop Dis ; 18(4): e0011451, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630832

ABSTRACT

Systems for disease vector control should be effective, efficient, and flexible to be able to tackle contemporary challenges and threats in the control and elimination of vector-borne diseases. As a priority activity towards the strengthening of vector control systems, it has been advocated that countries conduct a vector-control needs assessment. A review was carried out of the perceived needs for disease vector control programs among eleven countries and subnational states in South Asia and the Middle East. In each country or state, independent teams conducted vector control needs assessment with engagement of stakeholders. Important weaknesses were described for malaria, dengue and leishmaniases regarding vector surveillance, insecticide susceptibility testing, monitoring and evaluation of operations, entomological capacity and laboratory infrastructure. In addition, community mobilization and intersectoral collaboration showed important gaps. Countries and states expressed concern about insecticide resistance that could reduce the continued effectiveness of interventions, which demands improved monitoring. Moreover, attainment of disease elimination necessitates enhanced vector surveillance. Vector control needs assessment provided a useful planning tool for systematic strengthening of vector control systems. A limitation in conducting the vector control needs assessment was that it is time- and resource-intensive. To increase the feasibility and utility of national assessments, an abridged version of the guidance should focus on operationally relevant topics of the assessment. Similar reviews are needed in other regions with different contextual conditions.

2.
Pathol Res Pract ; 257: 155282, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38608371

ABSTRACT

Cancer is a group of diseases marked by unchecked cell proliferation and the ability for the disease to metastasize to different body areas. Enhancements in treatment and early detection are crucial for improved outcomes. LncRNAs are RNA molecules that encode proteins and have a length of more than 200 nucleotides. LncRNAs are crucial for chromatin architecture, gene regulation, and other cellular activities that impact both normal growth & pathological processes, even though they are unable to code for proteins. LncRNAs have emerged as significant regulators in the study of cancer biology, with a focus on their intricate function in the Notch signaling pathway. The imbalance of this pathway is often linked to a variety of malignancies. Notch signaling is essential for cellular functions like proliferation, differentiation, and death. The cellular response is shaped by these lncRNAs through their modulation of essential Notch pathway constituents such as receptors, ligands, and downstream effectors around it. Furthermore, a variety of cancer types exhibit irregular expression of Notch-related lncRNAs, underscoring their potential use as therapeutic targets and diagnostic markers. Gaining an understanding of the molecular processes behind the interaction between the Notch pathway and lncRNAs will help you better understand the intricate regulatory networks that control the development of cancer. This can open up new possibilities for individualized treatment plans and focused therapeutic interventions. The intricate relationships between lncRNAs & the Notch pathway in cancer are examined in this review.

3.
Article in English | MEDLINE | ID: mdl-38627930

ABSTRACT

Most of the Escherichia coli turned into serious pathogens or developed antibiotic resistance, mainly due to their ability to show different phenotypic traits. In order to overcome the resistance to these antibiotics, the use of essential oils (EOs) is of great significance against highly pathogenic microorganisms. This study has been made to compare the in vitro antibacterial activity and further validated the same through the molecular docking study of 13 antibiotics such as ciprofloxacin, chloramphenicol, erythromycin, ampicillin, cefotaxime, rifampicin, kanamycin, vancomycin, streptomycin, penicillin, nalidixic acid, trimethoprim, and polymyxin, and 10 EOs such as garlic, tulsi, neem, clove, thyme, peppermint, coriander, tea, lavender, and eucalyptus against the target protein (DNA gyrase) of E. coli MTCC443. E. coli Microbial Type Culture Collection 443 was found to be highly sensitive to ciprofloxacin (zone of inhibition [ZOI], 2.5 cm ±0.1) and chloramphenicol (ZOI, 1.8 cm ±0.1), whereas garlic oil (ZOI, 5.5 cm ±0.1) and coriander oil (ZOI, 4.4 cm ±0.1) were found comparatively most effective. Further, the in silico investigation observed the same; ciprofloxacin (binding affinity: -7.2 kcal/mol) and chloramphenicol (binding affinity: -6.6 kcal/mol). Penicillin (binding affinity: -4.2 kcal/mol) and polymyxin (binding affinity: -0.3 kcal/mol) were found to be least effective against the tested microbe, whereas vancomycin (binding affinity: +0.8 kcal/mol) had no effect on it. Garlic (binding affinity: -7.8 kcal/mol), coriander (binding affinity: -6.8 kcal/mol), peppermint (binding affinity: -6.2 kcal/mol), and neem (binding affinity: -6.2 kcal/mol) oil exhibited the potent antibacterial activity against E. coli MTCC443, whereas thyme (binding affinity: -6.1 kcal/mol), tea tree (binding affinity: -4.9 kcal/mol), and tulsi (binding affinity: -3.8 kcal/mol) oil were observed moderately effective. Eucalyptus (binding affinity: -2.9 kcal/mol) and lavender (binding affinity: -2.8 kcal/mol) oil were found to be the least effective among all the oils tested. The pharmacokinetics and networking were performed to the pharmacology of the potential compounds.

4.
Heliyon ; 10(8): e29433, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644870

ABSTRACT

Nanoparticles have different shapes and sizes between the range of 1-100 nm, which show advantages for stabilizing compounds, higher carrier capacity, and lower costs. Metal nanoparticles such as copper, gold, silver, and zinc are favorable components for various applications due to their interesting properties. In the present study, nanoparticles were synthesized by reduction with flower extracts of Bauhinia variegate & Saussurea lappa that were used to stabilize the copper nanoparticles. Furthermore, the characterization of plants synthesized copper nanoparticles was carried out through UV-visible dynamic light scattering. Additionally, morphological characterization of nanoparticles was confirmed by scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed the elemental composition of copper nanoparticles. Powder X-ray diffraction was conducted for the analysis of crystallinity, purity, and crystal size of plant-synthesized copper nanoparticles. The average particle size was evaluated and exhibited the particle size at the peak of 8.721 nm and 98.03 nm for flower extracts of Bauhinia variegate & Saussurea lappa copper nanoparticles. The Fourier Transform Infrared spectrum was taken to scrutinize the various functional groups that were responsible for the reduction of the copper ions. The antimicrobial results against the bacterial strains with the positive test results of the zone of inhibition were for Bauhinia variegate (17 mm, 18 mm, 19 mm, and 18 mm) and Saussurea lappa (17 mm, 19 mm, 18 mm, and 18 mm) respectively for plants synthesized copper nanoparticles against the Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa. Lipase inhibition assay and Amylase inhibition assay with different concentrations (20 µg/mL to 100 µg/mL) for Bauhinia variegate & Saussurea lappa (12.34 %-59.67 % and 10.50 %-47.01 %) and (34.52 %-89.02 % and 22.34 %-56.45 %) confirmed the anti-obesity and anti-diabetic activities of plants extract synthesized copper nanoparticles.

5.
FEBS J ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646733

ABSTRACT

Aminopeptidases with varied substrate specificities are involved in different crucial physiological processes of cellular homeostasis. They also have wide applications in food and pharma industries. Within the bacterial cell, broad specificity aminopeptidases primarily participate in the recycling of amino acids by degrading oligopeptides generated via primary proteolysis mediated by cellular ATP-dependent proteases. However, in bacteria, a truly broad specificity enzyme, which can cleave off acidic, basic, Gly and hydrophobic amino acid residues, is extremely rare. Here, we report structure-function of a putative glycyl aminopeptidase (M61xc) from Xanthomonas campestris pv campestris (Xcc) belonging to the M61 peptidase family. The enzyme exhibits broad specificity and cleaves Ala, Leu, Asp, Glu, Met, Ser, Phe, Tyr, Gly, Arg, and Lys at the N terminus, optimally of peptides with a length of 3-7 amino acids. Further, we report the high-resolution crystal structure of M61xc in the apo form (2.1 Å) and bestatin-bound form (1.95 Å), detailing its catalytic and substrate preference mechanisms. Comparative analysis of enzyme activity in crude cell extracts from both wild-type and m61xc-knockout mutant strains of Xcc has elucidated the unique intracellular role of M61xc. This study suggests that M61xc is the exclusive enzyme in these bacteria that is responsible for liberating Asp/Glu residues from the N-termini of peptides. Also, in view of its broad specificity and peptide degradation ability, it could be considered equivalent to M1 or other oligomeric peptidases from families like M17, M18, M42 or S9, who have an important auxiliary role in post-proteasomal protein degradation in prokaryotes.

6.
Angew Chem Int Ed Engl ; : e202404496, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38501354

ABSTRACT

The selective oxidative coupling of phenol derivatives, involving carbon-carbon (C-C) and carbon-oxygen (C-O) bond formation, has emerged as a critical approach in the synthesis of natural products. However, achieving precise control over the selectivity in coupling reactions of unsubstituted phenols utilizing solar light as the driving force remains a big challenge. In this study, we report a series of porous Cs3Bi2X9 (X = Cl, Br, I) photocatalysts with tailored bandgaps and compositions engineered for efficient solar-light-driven oxidative phenol coupling. Notably, p-Cs3Bi2Br9 exhibited about 73 % selectivity for C-C coupling, displaying a high formation rate of 47.3 µmol gcat.-1 h-1 under solar radiation. Furthermore, this approach enables control of the site-selectivity for phenol derivatives on Cs3Bi2X9, enhancing C-C coupling. The distinctive porous structure and appropriate band-edge positions of Cs3Bi2Br9 facilitated efficient charge separation, and surface interaction/activation of phenolic hydroxyl groups, resulting in the kinetically preferred formation of C-C over C-O bond. Mechanistic insights into the reaction pathway, supported by comprehensive control experiments, unveiled the crucial role of interfacial charge transfers and Lewis acid Bi sites in stabilizing phenolic intermediates, thereby directing the regioselectivity of diradical couplings and resulting in the formation of unsymmetrical biphenols.

7.
Bioorg Med Chem Lett ; 103: 129692, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38452826

ABSTRACT

An eco-friendly facile synthesis of a series of twenty 1-(4/6-substitutedbenzo[d]thiazol-2-yl)-3-(phenyl/substitutedphenyl)indeno[1,2-c]pyrazol-4(1H)-ones 7a-t was achieved by the reaction of 2-(benzoyl/substitutedbenzoyl)-(1H)-indene-1,3(2H)-dione 3a-t and 2-hydrazinyl-4/6-substitutedbenzo[d]thiazole 6a-t in presence of freshly dried ethanol and glacial acetic acid under reflux conditions in good yields. The newly synthesized derivatives were well characterized using different physical and spectral techniques (FTIR, 1H NMR & 13C NMR, and HRMS). All the compounds were subjected to assess their in vitro α-amylase and glucose diffusion inhibitory activity. Amongst them, the compounds 7i and 7l showed better α-amylase inhibitory activity demonstrating IC50 values of 92.99±1.94 µg/mL and 95.41±3.92 µg/mL, respectively in comparison to the standard drug acarbose (IC50 value of 103.60±2.15 µg/mL). The derivatives 7d and 7k exhibited good glucose diffusion inhibition with values of 2.25±1.16 µg/mL and 2.63±1.45 µg/mL, respectively with standard reference acarbose (2.76±0.55 µg/mL). The observed α-amylase inhibitory activity findings were corroborated through molecular docking investigations, particularly for the highly active compounds 7i (binding energy -8.0 kcal/mol) and 7l (binding energy -8.2 kcal/mol) respectively, in comparison to acarbose with a value of binding energy -6.9 kcal/mol for α-amylase.


Subject(s)
Acarbose , Glucose , Structure-Activity Relationship , Molecular Structure , Molecular Docking Simulation , alpha-Amylases/metabolism , Benzothiazoles/pharmacology , alpha-Glucosidases/metabolism , Glycoside Hydrolase Inhibitors/pharmacology
8.
Pathol Res Pract ; 256: 155266, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38554489

ABSTRACT

Hepatic tumors present a formidable challenge in cancer therapeutics, necessitating the exploration of novel treatment strategies. In recent years, targeting the immune system has attracted interest to augment existing therapeutic efficacy. The immune system in hepatic tumors includes numerous cells with diverse actions. CD8+ T lymphocytes, T helper 1 (Th1) CD4+ T lymphocytes, alternative M1 macrophages, and natural killer (NK) cells provide the antitumor immunity. However, Foxp3+ regulatory CD4+ T cells (Tregs), M2-like tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) are the key immune inhibitor cells. Tumor stroma can also affect these interactions. Targeting these cells and their secreted molecules is intriguing for eliminating malignant cells. The current review provides a synopsis of the immune system components involved in hepatic tumor expansion and highlights the molecular and cellular pathways that can be targeted for therapeutic intervention. It also overviews the diverse range of drugs, natural products, immunotherapy drugs, and nanoparticles that have been investigated to manipulate immune responses and bolster antitumor immunity. The review also addresses the potential advantages and challenges associated with these approaches.


Subject(s)
Biological Products , Liver Neoplasms , Nanoparticles , Neoplasms , Humans , Biological Products/therapeutic use , Biological Products/metabolism , Neoplasms/pathology , Immunotherapy , Macrophages/pathology , Liver Neoplasms/pathology , Nanoparticles/therapeutic use , Tumor Microenvironment
9.
Zootaxa ; 5415(4): 577-584, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38480180

ABSTRACT

Theobaldia indica Edwards, 1920, classified as a subspecies of Culiseta (Culiseta) alaskaensis (Ludlow, 1906), was recently restored to its original species status, as Culiseta (Culiseta) indica (Edwards), based on comprehensive assessments of morphological, ecological and distributional data. Predating the recognition of indica as a separate species, we collected specimens of this nominal taxon in the Western Himalayan region of India during 20152017, and used morphological and molecular studies to assess its taxonomic status. Our detailed examination of adult morphology, male genitalia and larval characteristics revealed significant distinctions between putative Cs. alaskaensis alaskaensis and Cs. alaskaensis indica, and sequencing of the barcode region of the mitochondrial COI gene yielded a Kimura 2 parameter genetic distance of 5.9% between them, well above the standard 23% commonly accepted to indicate separate species. These results strongly support the formal recognition of Cs. indica as a separate species. Furthermore, the geographical distribution of Cs. indica provides additional evidence in support of its species status.


Subject(s)
Culicidae , Male , Animals , Sequence Analysis, DNA , Larva , Phylogeny
10.
Sci Rep ; 14(1): 5934, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467843

ABSTRACT

The present study reports the green synthesis of silver nanoparticles (AgNPs) in powder form using the leaf extract of Azadirachta indica. The synthesis of AgNPs was confirmed by UV-vis spectroscopy, FTIR, XRD, FESEM, and EDX. The synthesized AgNPs were in a powdered state and dispersed completely in 5% polyethylene glycol (PEG) and demonstrated prolonged shelf life and enhanced bioavailability over a year without any aggregation. The resulting silver nanoformulation demonstrated complete inhibition against Sclerotinia sclerotiorum and Colletotrichum falcatum and 68% to 80% inhibition against Colletotrichum gloeosporioides and Rhizoctonia solani respectively, at 2000 ppm. The EC50 values determined through a statistical analysis were 66.42, 157.7, 19.06, and 33.30 ppm for S. sclerotiorum, C. falcatum, C. gloeosporioides, and R. solani respectively. The silver nanoformulation also established significant cytotoxicity, with a 74.96% inhibition rate against the human glioblastoma cell line U87MG at 250 ppm. The IC50 value for the cancerous cell lines was determined to be 56.87 ppm through statistical analysis. The proposed silver nanoformulation may be used as a next-generation fungicide in crop improvement and may also find application in anticancer investigations. To the best of our knowledge, this is also the first report of silver nanoformulation demonstrating complete inhibition against the economically significant phytopathogen C. falcatum.


Subject(s)
Antineoplastic Agents , Metal Nanoparticles , Humans , Silver/chemistry , Antifungal Agents/pharmacology , Metal Nanoparticles/chemistry , Fungi/metabolism , Cell Line , Antineoplastic Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology
11.
J Clin Invest ; 134(6)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38488001

ABSTRACT

Breast cancer stem cells (BCSCs) mitigate oxidative stress to maintain their viability and plasticity. However, the regulatory mechanism of oxidative stress in BCSCs remains unclear. We recently found that the histone reader ZMYND8 was upregulated in BCSCs. Here, we showed that ZMYND8 reduced ROS and iron to inhibit ferroptosis in aldehyde dehydrogenase-high (ALDHhi) BCSCs, leading to BCSC expansion and tumor initiation in mice. The underlying mechanism involved a two-fold posttranslational regulation of nuclear factor erythroid 2-related factor 2 (NRF2). ZMYND8 increased stability of NRF2 protein through KEAP1 silencing. On the other hand, ZMYND8 interacted with and recruited NRF2 to the promoters of antioxidant genes to enhance gene transcription in mammospheres. NRF2 phenocopied ZMYND8 to enhance BCSC stemness and tumor initiation by inhibiting ROS and ferroptosis. Loss of NRF2 counteracted ZMYND8's effects on antioxidant genes and ROS in mammospheres. Interestingly, ZMYND8 expression was directly controlled by NRF2 in mammospheres. Collectively, these findings uncover a positive feedback loop that amplifies the antioxidant defense mechanism sustaining BCSC survival and stemness.


Subject(s)
Breast Neoplasms , Ferroptosis , NF-E2-Related Factor 2 , Neoplastic Stem Cells , Trans-Activators , Animals , Mice , Antioxidants , Ferroptosis/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Trans-Activators/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology
12.
ACS Sens ; 9(3): 1419-1427, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38449354

ABSTRACT

Fluorescent probes are widely studied for metal ion detection because of their multiple favorable properties such as high sensitivity and selectivity, quick response, naked eye detection, and in situ monitoring. However, optical probes that can effectively detect the Cu(I) level in cell interiors are rare due to the difficulty associated with selectively and sensitively detecting this metal ion in a cell environment. Therefore, we designed and synthesized three water-soluble probes (1-3) with a 1,3,5-triazine core decorated by three substituents: a hydrophobic alkyl chain, a hydrophilic maltose, and a rhodamine B hydrazine fluorophore. Among the probes, probe 1, which has an octyl chain and a branched maltose group, was the most effective at sensing Cu+ in aqueous solution. Upon addition of Cu+, this probe showed a dramatic color change from colorless to pink in daylight and displayed an intense yellow fluorescence emission under 365 nm light. The limit of detection and dissociation constant (Kd) of this probe were 20 nM and 1.1 × 10-12 M, respectively, which are the lowest values reported to date. The two metal ion-binding sites and the aggregation-induced emission enhancement effect, endowed by the branched maltose group and the octyl chain, respectively, are responsible for the high sensitivity and selectivity of this probe for Cu+ detection, as demonstrated by 1H NMR, dynamic light scattering, and transmission electron microscopy studies. Furthermore, the probe successfully differentiated the Cu(I) level of cancer cells from that of the normal cells. Thus, the probe holds potential for real-time monitoring of Cu(I) level in biological samples and bioimaging of cancer cells.


Subject(s)
Fluorescent Dyes , Maltose , Rhodamines/chemistry , Fluorescent Dyes/chemistry , Water/chemistry , Magnetic Resonance Spectroscopy
13.
FEBS Lett ; 598(6): 684-701, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38426217

ABSTRACT

Acylaminoacyl peptidases (AAPs) play a pivotal role in various pathological conditions and are recognized as potential therapeutic targets. AAPs exhibit a wide range of activities, such as acylated amino acid-dependent aminopeptidase, endopeptidase, and less studied carboxypeptidase activity. We have determined the crystal structure of an AAP from Geobacillus stearothermophilus (S9gs) at 2.0 Å resolution. Despite being annotated as an aminopeptidase in the NCBI database, our enzymatic characterization proved S9gs to be a carboxypeptidase. Solution-scattering studies showed that S9gs exists as a tetramer in solution, and crystal structure analysis revealed adaptations responsible for the carboxypeptidase activity of S9gs. The findings present a hypothesis for substrate selection, substrate entry, and product exit from the active site, enriching our understanding of this rare carboxypeptidase.


Subject(s)
Geobacillus stearothermophilus , Peptide Hydrolases , Geobacillus stearothermophilus/metabolism , Peptide Hydrolases/metabolism , Endopeptidases , Aminopeptidases , Proteolysis
14.
Sci Rep ; 14(1): 5628, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454095

ABSTRACT

Vector control is a key intervention against mosquito borne diseases. However, conventional methods have several limitations and alternate strategies are in urgent need. Vector control with endectocides such as ivermectin is emerging as a novel strategy. The short half-life of ivermectin is a limiting factor for its application as a mass therapy tool for vector control. Isoxazoline compounds like fluralaner, a class of veterinary acaricides with long half-life hold promise as an alternative. However, information about their mosquitocidal effect is limited. We explored the efficacy of fluralaner against laboratory reared vector mosquitoes-Aedes aegypti, Anopheles stephensi, and, Culex quinquefasciatus. 24 h post-blood feeding, fluralaner showed a significant mosquitocidal effect with LC50 values in the range of 24.04-49.82 ng/mL for the three different mosquito species tested. Effects on life history characteristics (fecundity, egg hatch success, etc.) were also observed and significant effects were noted at drug concentrations of 20, 25 and 45 ng/mL for Ae. aegypti, An. stephensi, and, Cx. quinquefasciatus respectively. At higher drug concentration of 250 ng/mL, significant mortality was observed within 1-2 h of post blood feeding. Potent mosquitocidal effect coupled with its long half-life makes fluralaner an excellent candidate for drug based vector control strategies.


Subject(s)
Aedes , Anopheles , Culex , Insecticides , Isoxazoles , Animals , Ivermectin/pharmacology , Insecticides/pharmacology , Mosquito Vectors , Larva , Plant Extracts/pharmacology
15.
Indian J Otolaryngol Head Neck Surg ; 76(1): 1062-1065, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38440559

ABSTRACT

Castleman disease (CD) is a lymphoproliferative disorder classified into two categories as unicentric Castleman disease (UCD) or localized type and multicentric Castleman disease (MCD). A rare case of hyaline vascular variant of tonsil has been presented in which a 14 years old male presented with symptomatic unilateral hypertrophy of right tonsil. A right tonsillectomy was done and surgical pathology report was concluded as hyaline vascular variant of Castleman's disease.Castleman disease (CD) is a rare lymphoproliferative disorder also called as giant lymph node hyperplasia, angiofollicular lymph node hyperplasia (AFH), angiomatous lymphoid hematoma and follicular lymphoreticuloma. The treatment of symptomatic patients with UCD is complete surgical excision (as in present case). In cases with incomplete resection, adjuvant radiotherapy can be given.

16.
Indian J Med Res ; 159(2): 180-192, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38494626

ABSTRACT

BACKGROUND OBJECTIVES: Scrub typhus, caused by Orientia tsutsugamushi present in small mammals harbouring the ectoparasites. A study was undertaken to detect the pathogen present in small mammals and its ectoparasites in the scrub typhus-reported areas. METHODS: The small mammals (rodents/shrews) and its ectoparasites were screened for O. tsutsugamushi using nested PCR amplification of the groEL gene. Small mammals were collected by trapping and screened for ectoparasites (mites, ticks and fleas) by combing method. RESULTS: All the chigger mites collected were tested negative for O. tsutsugamushi . Interestingly, adult non-trombiculid mites ( Oribatida sp., Dermanyssus gallinae ), fleas ( Xenopsylla astia, X. cheopis, Ctenophalides felis and Ctenophalides sp.) and ticks ( Rhipicephalus sanguineus , R. haemaphysaloides ) screened were found to be positive for O. tsutsugamushi , which the authors believe is the first report on these species globally. Bandicota bengalensis with O. tsutsugamushi infection is reported for the first time in India. The O. tsutsugamushi groEL sequences from the positive samples were similar to the reference strains, Karp and Ikeda and phylogenetically clustered in clade IV with less evolutionary divergence. The blood samples of Rattus rattus , Suncus murinus and B. bengalensis collected from this area were tested positive for O. tsutsugamushi ; interestingly, the sequence similarity was much pronounced with their ectoparasites indicating the transmission of the pathogen to host or vice versa . INTERPRETATION CONCLUSIONS: The outcome of the present investigations widened our scope on the pathogens present in ectoparasites and rodents/shrews from this area. This will help to formulate the required vector control methods to combat zoonotic diseases.


Subject(s)
Orientia tsutsugamushi , Scrub Typhus , Ticks , Trombiculidae , Rats , Animals , Scrub Typhus/epidemiology , Orientia tsutsugamushi/genetics , Shrews , India/epidemiology , Rodentia/parasitology , Trombiculidae/genetics
17.
Sci Rep ; 14(1): 3010, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321224

ABSTRACT

Activated microglia have been implicated in the pathogenesis of age-related macular degeneration (AMD), diabetic retinopathy, and other neurodegenerative and neuroinflammatory disorders, but our understanding of the mechanisms behind their activation is in infant stages. With the goal of identifying novel genes associated with microglial activation in the retina, we applied a semiquantitative fundus spot scoring scale to an unbiased, state-of-the-science mouse forward genetics pipeline. A mutation in the gene encoding the E3 ubiquitin ligase Herc3 led to prominent accumulation of fundus spots. CRISPR mutagenesis was used to generate Herc3-/- mice, which developed prominent accumulation of fundus spots and corresponding activated Iba1 + /CD16 + subretinal microglia, retinal thinning on OCT and histology, and functional deficits by Optomotory and electrophysiology. Bulk RNA sequencing identified activation of inflammatory pathways and differentially expressed genes involved in the modulation of microglial activation. Thus, despite the known expression of multiple E3 ubiquitin ligases in the retina, we identified a non-redundant role for Herc3 in retinal homeostasis. Our findings are significant given that a dysregulated ubiquitin-proteasome system (UPS) is important in prevalent retinal diseases, in which activated microglia appear to play a role. This association between Herc3 deficiency, retinal microglial activation and retinal degeneration merits further study.


Subject(s)
Microglia , Retinal Degeneration , Animals , Humans , Mice , Microglia/metabolism , Retina/pathology , Retinal Degeneration/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism
18.
Mol Biol Rep ; 51(1): 291, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329553

ABSTRACT

BACKGROUND: Transmission Assessment Survey (TAS) is the WHO recommended method used for decision-making to stop or continue the MDA in lymphatic filariasis (LF) elimination programme. The WHO has also recommended Molecular Xenomonitoring (MX) of LF infection in vectors as an adjunct tool in settings under post-MDA or validation period. Screening of non-vectors by MX in post-MDA / validation settings could be useful to prevent a resurgence of LF infection, as there might be low abundance of vectors, especially in some seasons. In this study, we investigated the presence of LF infection in non-vectors in an area endemic for LF and has undergone many rounds of annual MDA with two drugs (Diethylcarbamazine and Albendazole, DA) and two rounds of triple drug regimens (Ivermectin + DA). METHODS AND RESULTS: Mosquitoes were collected from selected villages of Yadgir district in Karnataka state, India, during 2019. A total of 680 female mosquitoes were collected, identified morphologically by species and separated as pools. The female mosquitoes belonging to 3 species viz., Anopheles subpictus, Culex gelidus and Culex quinquefaciatus were separated, pooled, and the DNA extracted using less expensive method and followed by LDR based real-time PCR assay for detecting Wuchereria bancrofti infection in vector as well as non-vector mosquitoes. One pool out of 6 pools of An. subpictus, 2 pools out of 6 pools of Cx. gelidus, and 4 pools out of 8 pools of Cx. quinquefaciatus were found to be positive for W. bancrofti infection by RT-PCR. The infection rate in vectors and non-vectors was found to be 1.8% (95% CI: 0.5-4.2%) and 0.9% (95% CI: 0.2-2.3%), respectively. CONCLUSIONS: Our study showed that non-vectors also harbour W. bancrofti, thus opening an opportunity of using these mosquitoes as surrogate vectors for assessing risk of transmission to humans in LF endemic and post MDA areas.


Subject(s)
Anopheles , Elephantiasis, Filarial , Female , Humans , Animals , Elephantiasis, Filarial/epidemiology , Elephantiasis, Filarial/prevention & control , Wuchereria bancrofti/genetics , India , Mosquito Vectors , Anopheles/genetics , DNA
19.
Trop Anim Health Prod ; 56(2): 73, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38336895

ABSTRACT

A survey of Ixodid tick species diversity on domestic ruminants was conducted in seven agro-climatic regions of Tamil Nadu State, India. Tick surveys were conducted on domestic ruminants such as cattle, buffalo, sheep, and goat in seven districts of Tamil Nadu. The overall tick infestation was 38.8%, 5.8%, 14.6%, and 40.8% on cattle, buffaloes, sheep, and goats, respectively. A total of 8068 ticks from 18 species belonging to four genera were recorded. Overall, Haemaphysalis intermedia was the predominant (51.38%) tick species which has a wide host range. The most prevalent tick species in cattle and buffalo were Rhipicephalus (B.) microplus (25.41%) and Rhipicephalus haemaphysaloides (56.69%), respectively. Haemaphysalis intermedia was the most prevalent in ticks in sheep (70.35%), goat (70.35%), and dog (55.79%). In the present study, local anomalies such as the ectromely of one leg and the absence of adanal plates were observed in Rh. haemaphysaloides. The study also found that local anomaly such as protuberances in the hind tarsal and atrophy of the adanal plate was observed in Rhipicephalus (Boophilus) microplus. In addition, a general anomaly with three atrophy caudal appendages was also observed in Rhipicephalus (Boophilus) microplus. The overall prevalence of anomalies in Rh. haemaphysaloides and Rh. (B.) microplus was 0.3% (3/971) and 0.4% (3/678), respectively.


Subject(s)
Bison , Cattle Diseases , Dog Diseases , Goat Diseases , Ixodidae , Rhipicephalus , Sheep Diseases , Tick Infestations , Cattle , Animals , Sheep , Dogs , Buffaloes , India/epidemiology , Tick Infestations/epidemiology , Tick Infestations/veterinary , Goats , Atrophy/veterinary , Cattle Diseases/epidemiology , Goat Diseases/epidemiology , Sheep Diseases/epidemiology
20.
Sci Rep ; 14(1): 4074, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374327

ABSTRACT

Nanotechnology appears to be a promising tool to redefine crop nutrition in the coming decades. However, the crucial interactions of nanomaterials with abiotic components of the environment like soil organic matter (SOM) and carbon‒sequestration may hold the key to sustainable crop nutrition, fortification, and climate change. Here, we investigated the use of sugar press mud (PM) mediated ZnO nanosynthesis for soil amendment and nutrient mobilisation under moderately alkaline conditions. The positively charged (+ 7.61 mv) ZnO sheet-like nanoparticles (~ 17 nm) from zinc sulphate at the optimum dose of (75 mg/kg blended with PM (1.4% w/w) were used in reinforcing the soil matrix for wheat growth. The results demonstrated improved agronomic parameters with (~ 24%) and (~ 19%) relative increases in yield and plant Zn content. Also, the soil solution phase interactions of the ZnO nanoparticles with the PM-induced soil colloidal carbon (- 27.9 mv and diameter 0.4864 µm) along with its other components have influenced the soil nutrient dynamics and mineral ecology at large. Interestingly, one such interaction seems to have reversed the known Zn-P interaction from negative to positive. Thus, the study offers a fresh insight into the possible correlations between nutrient interactions and soil carbon sequestration for climate-resilient crop productivity.


Subject(s)
Nanoparticles , Zinc Oxide , Zinc Oxide/chemistry , Triticum , Sugars , Soil/chemistry , Nanoparticles/chemistry , Minerals , Carbon/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...